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Abstract represented by a rational polynomial in the form

The paper presents an effective generic approach for CAD de- N .

. . . . ) . 2 . ag + Z 3 a .fJ
sign of microwave circuits. We extend the one-dlmensmnakv(f) _aptaif+axft+ __ Qo j=19j 1)
C_auchy_ method for ffequency_resp(_)nse interpolation to a multi- T 14+ bif +baf?+ - T + E[')—1 b, fi )
dimensional Cauchy interpolation with respect to both frequency =

and physical dimensions. The paper also demonstrates thefeasﬁ%l— h . led . | f . . lati
ity of applying adaptive sampling to the multi-dimensional rationgl''S Scheme is called rational function interpolation or

function expansion. Two examples are given to verify the validifyauchy method. Consequently, using rational functions as
of the proposed approach. interpolation functions, yields a much closer representation

of the systems response than other schemes, e.g. splines.

. The efficiency of the Cauchy method is shown in compari-
1 Introduction son with linear and spline interpolation in Figure 1. The re-
A number of software packages are now commercially avaiPonse of a four-pole filter has been sampled at 20 frequency
able for Electro-Magnetic (EM) simulation of microwavéoints. Clearly, the Cauchy method is the only interpolation
circuits. These packages, however, are typically very cofgheme that interpolates the unknown frequency points cor-
putation intensive and exceed the capabilities of today&stly.
computer workstations. Over the past years, there has been a
strong interest to circumvent this problem using neural net-

works [1], space mapping [2] and parameter extraction [3]. [Sdlé] 3 =

The use of Cauchy method has been also proposed in [4][5]. 5l

The Cauchy method yields a surprisingly accurate match of -0t /

the computed points between (interpolated) and even exte- a5t (@ =

rior (extrapolated) to the sampled points with the exact solu- 20 _

. . . . 25+ - Exact Solution

tion. The method also allows an easy application of adaptive ~ Sample Points

Sampling [8] -30 Linear Interpolation f [GHZ]

Most of the papers published, however, on application of o7 3% 39 4 43 a4
. . . . . S11 -

Cauchy method deal with one-dimensional interpolation, [dB] O

namely frequency response interpolation. In this paper, 0

we extend the one-dimensional interpolation for frequency -10¢

response interpolation to multi-dimensional Cauchy inter- Sl

polation with respect to both frequency and geometrical j§§j L e e

dimensions. Two different approaches are suggested to ag| — Sdlineinterpolation |

achieve a multi-dimensional approach: A recursive one- IGH]

dimensional application of the standard Cauchy method and ¢, gl 38 39 4 43 :4'4

multi-dimensional rational function expansion. [dB] O e,

Adaptive sampling can also be applied to the multi- 12

dimensional Cauchy method. Using the recursive method, a5k

the samples must lie on a —not necessary uniform- grid and 20} = Exact Solution

adaptive sampling can only be used in one dimension with- 250 AR (mEsolation ]

out constraints. 30 | f[GHZ] |

. . 37 38 39 4 41 4.2 4.3 4.4
2 One-Dimensional Cauchy Method

A closer look on system transfer functions, e.g. return loddgure 1: Interpolation of filter response, a) linear, b) cubic
insertion loss, tells us that most of these functions can $i&ine, ¢) Cauchy
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DHAENE et al. [8] showed that an adaptive sampling scherBel.2  Algorithm Implementation

can be applied in the Cauchy Method in order to reduce the

number of sampling points to the minimum. The goal is to interpolate the function valgé of an arbi-
.o . trary located poing™ = pf,ps,...,ps. The algorithm can
3 Multi-Dimensional Cauchy Method be divided into three steps:

The rational function interpolation can be extended to the

interpolation of multi-dimensional functions. Two new ap-step 1: The root process starts with interpolating the point
proaches are shown here: A multi-dimensional recursive p* with constanip, = p3,ps = p; etc. parallel to the
Cauchy method and a multi-dimensional rational function p1-axes, shown as a dashed line in Figure 3(a). This

expansion. . . . : . .
_ is a one-dimensional interpolation, so the algoritGm
3.1 Recursive Cauchy Method defined in egn.(3) can be used. This step yields the de-
The recursive method solves the multi-dimensional interpo- sired interpolated point
lation using a recursive algorithm. The algorithm itself per-
forms a one-dimensional Cauchy interpolation as described S* = C([p{,pg, o A) (4)
in Section 2. From a given s&f of ¥ sample points and an
arbitrary poinp* the algorithmC calculates the interpolated ~ where A is the set of sampling points fgr, to p{”

function valueS* (p*). andp, = ps,...=const. These are the points marked
The setH is put together by the pairs of sampling poipts with in Figure 3. They may not fall on the grid
to p” and their function value$’ to S”. Thus# can be of known sample points. If that is the case, the algo-
written as rithm proceeds to step 2 in order to determine the points
@. Otherwise (the points are known) the algorithm
H={®,s),®",5"),®",5"),....®", 8"} (2 proceeds with Step 3.

The algorithmC' can be defined as a functio@(p®,#)  step 2: The algorithm calls itself for each of the unknown
;‘Qﬁﬁggds the interpolated responsSe for p* using the points @ . In the example the algorithm starts four new
plesre. child processes
Cr 1) = [(p" A, 5, @",5"),... (0", 5™)}) = S*] O

Using these definitions the algorithm can now be extended to Cllo” v5) B
multi-dimensional interpolation. For this purpose the set of ((p1m,p2), 2)

sample points must be extended from the one-dimensional C((m",p3),Bs) ,

sample point set{ to a multi-dimensional sample point ar- C((p1™, p%), Bs) (5)
ray.

as shown in Figure 3(b). ThB's are sets of sample
points with a fixed value fop; as seen from Figure 3.
The interpolation is now performed along thg-axis.

The sample points in an n-dimensional parameter space are 1h€ routine called is exactly the routine already used in
now represented by vectofs= (p1,ps,...,pn). For the Step 1. The algorlthm is thugcursive Again, each
recursive algorithm the set of sample poifisS) must fall subprocess checks if the ggis from known samples.
on a complete filled grid of points. Exemplary sample loca- If not, the algorithm starts another instance of subpro-

tions in the parameter space are shown in Figure 2 for two C€SS€Ss in order to interpolate the points include#in
and three parameters. using the next higher dimension. In the example this

would beps.

3.1.1 Choice of Sample Points in Parameter Space

Step 3: In case the subprocess determines that all sample
points are known, it calculates the interpolated point
and hands it back to the parent process which requested
that point.
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Finally, the answer for the root process eqn.(4) will be found.

Adaptive sampling can only be applied in the last dimension,
as all other samples must fall on the grid. This is not a major
Figure 2: Sample locations for two and three dimensionghitation, because most parameters show a slow variation
parameter space and the most non-linear parameter can be chosen last.
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3.2 Multi-Dimensional Rational Function Expansion It should be, however, mentioned, that for large dimensional

The multi-dimensional method can also be implemented B{PPIems it would be more efficient to split the problem into

a single multi-dimensional rational polynomial. in the forn$€Veral problems of lower order, which are then solved re-
cursively as shown in Section 3.1.

Prum(P1, D2, D3, - - -
S(p1,p2,p3,-..) = Prp2spss) gy g Examples

B Pden(p17p2ap37"') .
Two examples are shown here to demonstrate the interpola-
WhereP,um (p1, P2, Ps; - - -) @A Paen (p1, P2, p3, - --) @€ @ ion ysing multi-dimensional Cauchy method.
bitrary polynomials of the parameters in the numerator and1 Mi trio Line | q
denominatop, to p,, respectively. Using this approach th&" ICrostrip Line Impedance
coefficients of eqn.6 are determined directlyak®TA [9] The multi-dimensional rational function expansion is
showed the extension into two dimension and the genetemonstrated by modelling the line impedance of a mi-
scheme is discussed shortly here. crostrip line respect to the line’s width-to-height-raficand
One possible expansion of the polynomial for two dimef€ relative dielectric constant of the substrate.
sions could be The modelling algorithm described in Section 3.2 returns a
P(p1, p2) = ao-Harp1 +asps+aspipstaap’-+aspi-raspps-+. .. closed-form, differentiable rational function:
(7) w

. . . . ) . Z(p1 =€r,p2= ) = 8
This approach yields a linear equation system. Solving this (1 P2 h) ®)
system determines directly the coefficients of eqn.7 and,
hence, a closed-form and differentiable equation of the sys- ;9 6235 1 117.0078p, + 9799.3839ps — 7.4367p2 + ...
tem’s responsg (p, pz, p3, - - -). 1.0 + 0.45021p; + 36.5709p> — 0.01946p% + 12.5519p2 + ...
As there are no restrictions whatsoever, a multi-dimensional

adaptive sampling of the parameter space can be applied ¢ samples are determined by an adaptive sampling tech-
analogy to the one-dimensional case. nique similar to the method used in [8]. taking 19 samples.

The model provides an accuracy within 0.1% error.
4.2 Narrow-Band 3-Pole Filter

p2
1" p2* .
er oz ez o 2 In this example the S-parameters of the response of a pla-
P2 XX \>< \X nar superconductive microstrip filter as shown in Figure 4
. P P are interpolated. The five parameters are the four geometri-
Pe == *””***f* " cal parameters, namely the gap length and resonator lengths,
p2" i § / i § and the frequency. A sample grid with 5 sample points per
p2 D by direction for the geometrical parameter is used.
A D S XX
: : : : Yk Point for which function value is requested
pl X Sample points
pLl pl” pL pL Points required for interpolation
(a) Step 1
(p1",p2*) (pL,p2*) (p1"" ,p2¥)
P2 P2 P2 P2
M N N
p2 ok p2 %} p2 p2
1% / /
p2: ‘i p2: \i, b2 ‘¢ p2
p2: \?‘ P2 ‘{‘3 P2 ‘g‘z p2':
p2! ‘;% p2! ‘;:3 P2 ‘rlg P2
| | |
1 pL ! p1 ! pl
pr p1” p1'
(b) Step 2

Figure 3: Steps in recursive Cauchy method
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Two examples have been given. The first demonstrates that

L 2 P2 L a complete and accurate numerical model of a three-pole fil-
v ) A 0 ter with 4 geometrical parameter plus frequency dependency
p3 P4 P3 can be obtained. The frequency variable determined in the

last recursive level was sampled adaptively. The second ex-
. ) ) ample illustrates the concept of the multi-dimensional ratio-
Figure 4: Layout of 3-pole filter withparameters p1 to p4, 5 function expansion approach. Both approaches can be
. . . combined to tackle large-dimensional problems using adap-
Due to the underlying EM-simulation software the paramg: sampling for several parameters at the same time.
ter values are forced to lie on a 1.75 mil grid. The frequency

dependency is determined by adaptive sampling, as the last
stage of the recursive algorithm. References

Shown in Figure 5 is one interpolated response for parametil A. Zaabab, Q.J. Zhang, M. Nakl#pplication of Neural Networks

values not falling on the 1.75 mil grid. For reference, the ex- in Circuit Analysis IEEE Conference on Neural Networks, 1995, pp
’ ) ’ 423 - 426

act solution, obtained by a finer meshing and finer frequengy J. w. Bandler. Bieracki, S.H. Chen, R.A. Grobelny, R.H. Hemmers,
stepping, is shown, too. One notice the very good agreement Space Mapping Technique for Electromagnetic OptimizatigftE

i i ; Transactions MTT, Vol 42, pp 2536 — 2544, Dec. 1994
from the interpolated response with the exact solution. [3] S.Ye, R. MansourAn innovative CAD Technique for Microstrip Fil-

In Figure 6 the response is shown, when the multi- ter DesignlEEE Transactions MTT, Vol 45, pp 780 — 786, May 1997
dimensional Cauchy method is not applied. Due to the ré R.S.Adve, T.K. Sarkar, S.M. Rao, E.K. Miller, D.R. Pflugpplica-

tricti that all trical | h to fall th tion of the Cauchy Method for Extrapolating/Interpolating Narrow-
stricuons, that all geometrical values have 10 1all on thé  g,g System Responsé@sansactions Microwave Theory and Tech-

1.75 mil grid the parameter values must be snapped to the niques, Vol 45, No 5, pp 837 — 845, May 1997
next grid-point above or below. [5] K.Kottopalli, T. Sarkar, Y. Hua, E. Miller, G. J. Burkéccurate Com-
" L. putation of Wideband Response of Electromagnetic Systems Utilizing
In addition, the frequency resolution is lost, as only the sam-  Narrow-Band InformationlEEE Transactions on Microwave Theory
pled frequencies can be shown. As a result the filter respon[gia gndBTechnig_u%s, %ol 39, I\AO 4,pp 682 — 687(,1 Agril 199|10 A |
; . Brezinski, Padé-type Approximation and General Orthogonal
degrades to a meaningless shape. Polynomials, Basel, Switzerland, Birkhauser Verlag, 1980
i [7] J. Stoer, R. Bulirschintroduction to Numerical AnalysisSpringer-
5 Conclusion Verlag, New York, Section 2.2, 1980
L [|8] T. Dhaene, J. Ureel, N. Fache, D. De ZuttAdaptive Frequency
In the past many publications have shown the remarkable sampling Algorithm for Fast and Accurate S-Parameter Modeling of

reduction of computational cost when Cauchy method and General Planar StructuredEEE MTT-Symposium, pp. 1427 — 1431,

adaptlve sampllng 1S applled to the frequency response 'E] S. SakataPartial Realization of 2D discrete linear system and 2D

terpolation. Padé Approximation and Reduction of 2D Rational Transfer Func-
i tions ProceedingsHEE, Vol. 78, pp 604—-613, April 1990

-I;]hls palper _has ShOWIn. Ejh.at the. me}hOdean be re]).(tendefltg?‘]. Ureel, N. Fache, D. De Zutter, P. LagasAelaptive Frequency

the application on mu t'_' |men$|on_a problems. This can e Sampling Algorithm of Scattering Parameters Obtained by Electro-

ther be done by recursive application of the Cauchy method magnetic SimulationEEE AP Symposium, pp 1162 — 1167, 1994

or by an all-in-one multi-dimensional rational polynomial

approach. In doing so similar savings of computational ex-

penses for multi-dimensional problems can be achieved as

for the one-dimensional case.
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Figure 5: Interpolated -response of 3-pole filter Figure 6: Response using sampled points above and below
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