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Abstract
The paper presents an effective generic approach for CAD de-
sign of microwave circuits. We extend the one-dimensional
Cauchy method for frequency response interpolation to a multi-
dimensional Cauchy interpolation with respect to both frequency
and physical dimensions. The paper also demonstrates the feasibil-
ity of applying adaptive sampling to the multi-dimensional rational
function expansion. Two examples are given to verify the validity
of the proposed approach.

1 Introduction
A number of software packages are now commercially avail-
able for Electro-Magnetic (EM) simulation of microwave
circuits. These packages, however, are typically very com-
putation intensive and exceed the capabilities of today’s
computer workstations. Over the past years, there has been a
strong interest to circumvent this problem using neural net-
works [1], space mapping [2] and parameter extraction [3].
The use of Cauchy method has been also proposed in [4][5].
The Cauchy method yields a surprisingly accurate match of
the computed points between (interpolated) and even exte-
rior (extrapolated) to the sampled points with the exact solu-
tion. The method also allows an easy application of adaptive
sampling [8].
Most of the papers published, however, on application of
Cauchy method deal with one-dimensional interpolation,
namely frequency response interpolation. In this paper,
we extend the one-dimensional interpolation for frequency
response interpolation to multi-dimensional Cauchy inter-
polation with respect to both frequency and geometrical
dimensions. Two different approaches are suggested to
achieve a multi-dimensional approach: A recursive one-
dimensional application of the standard Cauchy method and
multi-dimensional rational function expansion.
Adaptive sampling can also be applied to the multi-
dimensional Cauchy method. Using the recursive method,
the samples must lie on a –not necessary uniform– grid and
adaptive sampling can only be used in one dimension with-
out constraints.

2 One-Dimensional Cauchy Method
A closer look on system transfer functions, e.g. return loss,
insertion loss, tells us that most of these functions can be

represented by a rational polynomial in the form

S(f) =
a0 + a1f + a2f

2 + � � �

1 + b1f + b2f2 + � � �
=

a0 +
PN

j=1 ajf
j

1 +
PD

j=1 bjf
j
: (1)

This scheme is called rational function interpolation or
Cauchy method. Consequently, using rational functions as
interpolation functions, yields a much closer representation
of the systems response than other schemes, e.g. splines.
The efficiency of the Cauchy method is shown in compari-
son with linear and spline interpolation in Figure 1. The re-
sponse of a four-pole filter has been sampled at 20 frequency
points. Clearly, the Cauchy method is the only interpolation
scheme that interpolates the unknown frequency points cor-
rectly.
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Figure 1: Interpolation of filter response, a) linear, b) cubic
spline, c) Cauchy
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DHAENE et al. [8] showed that an adaptive sampling scheme
can be applied in the Cauchy Method in order to reduce the
number of sampling points to the minimum.

3 Multi-Dimensional Cauchy Method
The rational function interpolation can be extended to the
interpolation of multi-dimensional functions. Two new ap-
proaches are shown here: A multi-dimensional recursive
Cauchy method and a multi-dimensional rational function
expansion.

3.1 Recursive Cauchy Method

The recursive method solves the multi-dimensional interpo-
lation using a recursive algorithm. The algorithm itself per-
forms a one-dimensional Cauchy interpolation as described
in Section 2. From a given setH of 
 sample points and an
arbitrary pointp� the algorithmC calculates the interpolated
function valueS�(p�).
The setH is put together by the pairs of sampling pointsp0

to p
 and their function valuesS0 to S
 . ThusH can be
written as

H = f(p0; S0); (p00; S00); (p000; S000); : : : ; (p
 ; S
)g (2)

The algorithmC can be defined as a functionC(p�;H)
which yields the interpolated responseS� for p� using the
samplesH.

C(p�;H)
:
=
��

p�; f(p0; S0); (p00; S00); : : : (pn; Sn)g
�
! S�

�
(3)

Using these definitions the algorithm can now be extended to
multi-dimensional interpolation. For this purpose the set of
sample points must be extended from the one-dimensional
sample point setH to a multi-dimensional sample point ar-
ray.

3.1.1 Choice of Sample Points in Parameter Space

The sample points in an n-dimensional parameter space are
now represented by vectors~p = (p1; p2; : : : ; pn). For the
recursive algorithm the set of sample points(~p; S) must fall
on a complete filled grid of points. Exemplary sample loca-
tions in the parameter space are shown in Figure 2 for two
and three parameters.
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Figure 2: Sample locations for two and three dimensional
parameter space

3.1.2 Algorithm Implementation

The goal is to interpolate the function valueS� of an arbi-
trary located point~p� = p�1; p

�

2; : : : ; p
�

n. The algorithm can
be divided into three steps:

Step 1:The root process starts with interpolating the point
p� with constantp2 = p�2; p3 = p�3 etc. parallel to the
p1-axes, shown as a dashed line in Figure 3(a). This
is a one-dimensional interpolation, so the algorithmC
defined in eqn.(3) can be used. This step yields the de-
sired interpolated point

S� = C
�
[p�1; p

�

2; : : :];A
�

(4)

whereA is the set of sampling points forp01 to p00001

andp2 = p3; : : :=const. These are the points marked
with in Figure 3. They may not fall on the grid
of known sample points. If that is the case, the algo-
rithm proceeds to step 2 in order to determine the points

. Otherwise (the points are known) the algorithm
proceeds with Step 3.

Step 2: The algorithm calls itself for each of the unknown
points . In the example the algorithm starts four new
child processes

C((p01; p
�

2);B1) ;

C((p1
00; p�2);B2) ;

C((p1
000; p�2);B3) ;

C((p1
0000; p�2);B4) (5)

as shown in Figure 3(b). TheB’s are sets of sample
points with a fixed value forp1 as seen from Figure 3.
The interpolation is now performed along thep2-axis.
The routine called is exactly the routine already used in
Step 1. The algorithm is thusrecursive. Again, each
subprocess checks if the setB is from known samples.
If not, the algorithm starts another instance of subpro-
cesses in order to interpolate the points included inB
using the next higher dimension. In the example this
would bep3.

Step 3: In case the subprocess determines that all sample
points are known, it calculates the interpolated point
and hands it back to the parent process which requested
that point.

Finally, the answer for the root process eqn.(4) will be found.

Adaptive sampling can only be applied in the last dimension,
as all other samples must fall on the grid. This is not a major
limitation, because most parameters show a slow variation
and the most non-linear parameter can be chosen last.
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3.2 Multi-Dimensional Rational Function Expansion

The multi-dimensional method can also be implemented by
a single multi-dimensional rational polynomial. in the form

S(p1; p2; p3; : : :) =
Pnum(p1; p2; p3; : : :)

Pden(p1; p2; p3; : : :)
(6)

wherePnum(p1; p2; p3; : : :) andPden(p1; p2; p3; : : :) are ar-
bitrary polynomials of the parameters in the numerator and
denominatorp1 to pn, respectively. Using this approach the
coefficients of eqn.6 are determined directly. SAKATA [9]
showed the extension into two dimension and the general
scheme is discussed shortly here.
One possible expansion of the polynomial for two dimen-
sions could be

P (p1; p2) = a0+a1p1+a2p2+a3p1p2+a4p
2

1+a5p
2

2+a6p1p2+: : :

(7)

This approach yields a linear equation system. Solving this
system determines directly the coefficients of eqn.7 and,
hence, a closed-form and differentiable equation of the sys-
tem’s responseS(p1; p2; p3; : : :).

As there are no restrictions whatsoever, a multi-dimensional
adaptive sampling of the parameter space can be applied in
analogy to the one-dimensional case.
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Figure 3: Steps in recursive Cauchy method

It should be, however, mentioned, that for large dimensional
problems it would be more efficient to split the problem into
several problems of lower order, which are then solved re-
cursively as shown in Section 3.1.

4 Examples
Two examples are shown here to demonstrate the interpola-
tion using multi-dimensional Cauchy method.

4.1 Microstrip Line Impedance

The multi-dimensional rational function expansion is
demonstrated by modelling the line impedance of a mi-
crostrip line respect to the line’s width-to-height-ratiow

h
and

the relative dielectric constant�r of the substrate.

The modelling algorithm described in Section 3.2 returns a
closed-form, differentiable rational function:

Z(p1 = �r; p2 =
w

h
) = (8)

549:6232 + 117:0078p1 + 9799:3839p2 � 7:4367p2
1
+ : : :

1:0 + 0:45021p1 + 36:5709p2 � 0:01946p2
1
+ 12:5519p2

2
+ : : :

The samples are determined by an adaptive sampling tech-
nique similar to the method used in [8]. taking 19 samples.
The model provides an accuracy within 0.1% error.

4.2 Narrow-Band 3-Pole Filter

In this example the S-parameters of the response of a pla-
nar superconductive microstrip filter as shown in Figure 4
are interpolated. The five parameters are the four geometri-
cal parameters, namely the gap length and resonator lengths,
and the frequency. A sample grid with 5 sample points per
direction for the geometrical parameter is used.
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Figure 4: Layout of 3-pole filter withparameters p1 to p4

Due to the underlying EM-simulation software the parame-
ter values are forced to lie on a 1.75 mil grid. The frequency
dependency is determined by adaptive sampling, as the last
stage of the recursive algorithm.

Shown in Figure 5 is one interpolated response for parameter
values not falling on the 1.75 mil grid. For reference, the ex-
act solution, obtained by a finer meshing and finer frequency
stepping, is shown, too. One notice the very good agreement
from the interpolated response with the exact solution.

In Figure 6 the response is shown, when the multi-
dimensional Cauchy method is not applied. Due to the re-
strictions, that all geometrical values have to fall on the
1.75 mil grid the parameter values must be snapped to the
next grid-point above or below.

In addition, the frequency resolution is lost, as only the sam-
pled frequencies can be shown. As a result the filter response
degrades to a meaningless shape.

5 Conclusion
In the past many publications have shown the remarkable
reduction of computational cost when Cauchy method and
adaptive sampling is applied to the frequency response in-
terpolation.

This paper has shown that the method can be extended to
the application on multi-dimensional problems. This can ei-
ther be done by recursive application of the Cauchy method
or by an all-in-one multi-dimensional rational polynomial
approach. In doing so similar savings of computational ex-
penses for multi-dimensional problems can be achieved as
for the one-dimensional case.
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Figure 5: InterpolatedS11-response of 3-pole filter

Two examples have been given. The first demonstrates that
a complete and accurate numerical model of a three-pole fil-
ter with 4 geometrical parameter plus frequency dependency
can be obtained. The frequency variable determined in the
last recursive level was sampled adaptively. The second ex-
ample illustrates the concept of the multi-dimensional ratio-
nal function expansion approach. Both approaches can be
combined to tackle large-dimensional problems using adap-
tive sampling for several parameters at the same time.

References
[1] A. Zaabab, Q.J. Zhang, M. Nakla,Application of Neural Networks

in Circuit Analysis, IEEE Conference on Neural Networks, 1995, pp
423 – 426

[2] J. W. Bandler. Biernacki, S.H. Chen, R.A. Grobelny, R.H. Hemmers,
Space Mapping Technique for Electromagnetic Optimization, IEEE
Transactions MTT, Vol 42, pp 2536 – 2544, Dec. 1994

[3] S. Ye, R. Mansour,An innovative CAD Technique for Microstrip Fil-
ter Design,IEEE Transactions MTT, Vol 45, pp 780 – 786, May 1997

[4] R. S. Adve, T.K. Sarkar, S.M. Rao, E.K. Miller, D.R. Pflug,Applica-
tion of the Cauchy Method for Extrapolating/Interpolating Narrow-
Band System Responses, Transactions Microwave Theory and Tech-
niques, Vol 45, No 5, pp 837 – 845, May 1997

[5] K. Kottopalli, T. Sarkar, Y. Hua, E. Miller, G. J. Burke,Accurate Com-
putation of Wideband Response of Electromagnetic Systems Utilizing
Narrow-Band Information, IEEE Transactions on Microwave Theory
and Techniques, Vol 39, No 4, pp 682 – 687, April 1991
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Padé Approximation and Reduction of 2D Rational Transfer Func-
tions, Proceedings IEEE, Vol. 78, pp 604–613, April 1990

[10] J. Ureel, N. Fache, D. De Zutter, P. Lagasse,Adaptive Frequency
Sampling Algorithm of Scattering Parameters Obtained by Electro-
magnetic Simulation, IEEE AP Symposium, pp 1162 – 1167, 1994

-35

-30

-25

-20

-15

-10

-5

0

5

3.7 3.75 3.8 3.85 3.9 3.95 4 4.05 4.1 4.15 4.2

Sample below
Sample  above

f [GHz]

S11
[dB]

Figure 6: Response using sampled points above and below
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